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Recently, the swelling kinetics of thin-plate gels with rectangular surfaces under mechanical constraint was
experimentally investigated[A. Suzuki and T. Hara, J. Chem. Phys.114, 5012(2001)]. In this system, the top
and bottom surfaces of gels were chemically clamped on the glass plates, and the gels could swell and shrink
only along the thickness direction when the osmotic pressure of the solvent is changed. Here, we analyze this
process using the linearized stress-diffusion coupling model of gels based on the two fluids model. The result
is somewhat unusual in that the time evolution of the thickness is described by a single exponential even
though the swelling is governed by the diffusion of solvent. This result and that the characteristic relaxation
time depends on the lengths of the rectangular surfaces and not on the thickness of gels agree well with the
experiment.
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I. INTRODUCTION

A gel placed in solution absorbs(or desorbs) the solutions
and swells(or shrinks) when the temperature or the solution
composition is changed. The dynamics of this process was
first analyzed by Tanaka and Fillmore(TF). They considered
the swelling of a spherical gel and proposed the following
equation(TF equation) to describe the kinetics of swelling
[2]:

zu̇sr ,td = = · ssr ,td, s1d

whereusr ,td is the displacement of a pointr of the polymer
network at timet, s is the stress tensor of the polymer net-
work, andz the friction constant associated with the motion
of the polymer relative to the solvent. This equation ex-
plained the characteristic feature of the swelling phenomena
of a spherical gelf3g; the relaxation timet is of the order of
d2/D, whered is the diameter of the gel andD is the collec-
tive diffusion constant.

Recently, Suzuki and Hara reported the experimental re-
sults which cannot be interpreted by the TF equation[1].
They studied the swelling kinetics of thin-plate gels shown in
Fig. 1, where the top and bottom surfaces were chemically
clamped on the glass plates, and the gels could swell and
shrink only along the thickness direction between the glass
plates. Experimental results show that the time evolution of
the thickness is well described by a single exponential and
that the characteristic relaxation timet depends on the
lengths of the rectangular surfaces and not on the thickness
of gels:t.D−1sa0

−2+b0
−2d−1, wherea0 andb0 are the lengths

of rectangular surfaces.
The experiment of Suzuki and Hara cannot be described

by the TF equation as we shall show in later sections. In fact,
it has been realized that the TF equation cannot reproduce
general anisotropic deformations of gels such as the free
swelling phenomena of long cylindrical and large disklike
gels [6]. As an alternative, the stress-diffusion coupling
model, which are based on the two fluids model, has been

proposed. In this model, the coupling between the solvent
diffusion and the polymer stress are considered[4,5].

Here, we formulate the dynamics of gels using the stress-
diffusion coupling model, and calculate the swelling process
of thin-plate gels with rectangular surfaces under mechanical
constraint. The result shows an unusual feature of the stress-
diffusion coupling model.

II. The stress-diffusion coupling model

We first explain the stress-diffusion coupling model. Let
usr ,td be the displacement of the point located atr in the
reference state andu̇sr ,td be its time derivativefu̇sr ,td
=]usr ,td /]tg. Let vssr ,td be the velocity of the solvent. The
equations of motion which determineusr ,td andvssr ,td are
as follows[4]:

zsvs − u̇d = − s1 − fd = p, s2d

= · ss − pI d = 0, s3d

= · ffu̇ + s1 − fdvsg = 0. s4d

Here,z is the friction constant associated with the motion of
the polymer relative to the solvent,f is the volume fraction
of polymer,p is the pressure, andI is the unit tensor defined

FIG. 1. Model of the thin-plate gel.
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by I ij =dij . The first equation represents Darcy’s law for the
permeation of solvent through the gel network. The sec-
ond equation stands for the force balance, wheres is the
stress of the gel network. The third equation stands for the
incompressibility condition.

The stresss is given by the constitutive equation for the
gel network. Here, we use the linearized form for the stress
tensor:

si j = Ko
k

] uk

] xk
dij + GS ] ui

] xj
+

] uj

] xi
−

2

3o
k

] uk

] xk
dijD , s5d

whereK is the bulk modulus andG is the shear modulus of
gels. Equationss3d and s5d give

o
k
FSK +

G

3
D ]2uk

] xi ] xk
+ G

]2ui

] xk ] xk
G =

] p

] xi
. s6d

From Eq.s2d, the solvent flux relative to the polymer net-
work is described as

vsi − u̇i = −
s1 − fd

z

] p

] xi
. s7d

The volume fractionf can be regarded as constant in the
linear analysis. Hence, the incompressibility condition, Eq.
s4d, is described as

o
i
Ff

] u̇i

] xi
+ s1 − fd

] vsi

] xi
G = 0. s8d

Equationss6d–s8d are the closed set which determineusr ,td,
vssr ,td andpsr ,td.

To solve the set of equations, we need boundary condi-
tions. There are two kinds of boundary conditions, each de-
scribing the mechanical condition and the condition of sol-
vent permeation.

(i) Mechanical condition. If the mechanical forcefbc act-
ing on the boundary is known, the mechanical balance equa-
tion has to be imposed:

ss − pI d ·n = fbc for a deformable boundary. s9d

On the other hand, if the velocity of the gel network at the
boundaryvbc is known, the equation to be imposed is

u̇ = vbc for gels fixed to a boundary. s10d

(ii ) Solvent permeation at the boundary. If the solvent can
permeate freely at the boundary, the pressurep must be con-
tinuous at the boundary.

p = pout for a permeable wall, s11d

wherepout is the osmotic pressure outside the gel.
On the other hand, if the solvent cannot permeate through

the boundary, the normal velocitysvs− u̇d ·n (n being the unit
vector normal to the boundary) must be zero. Using Eq.(7),
this condition can be written as

s=pd ·n = 0 for an impermeable wall. s12d

III. THEORETICAL ANALYSIS OF THE SWELLING OF A
THIN-PLATE-LIKE GEL

We consider a thin-plate-like gel shown in Fig. 1. The top
and bottom surfaces of the gel are chemically clamped on the
glass plates, and the gel can swell and shrink only along the
one-dimensional thickness direction. We take the origin of
the coordinates at the center of the thin-plate gel. Leta0, b0,
and 2c0 be the initial length of the edge of the gel. We as-
sume that the thickness of the gel is much smaller than the
side length of the gel. We consider the situation that the
osmotic pressurepout of the external solutions is changed
from 0 to p0. Our objective is to find out the time depen-
dence of the thickness 2cstd of the gel.

Now, since the gel is fixed at the glass plate, we can
assume that the displacement vectorsux,uy,uzd is of the same
order of the thickness of the gelcstd :ux,uy,uz,cstd. There-
fore, the terms of]xui and]yui are much smaller than those
of ]zui. In such a case, Eq.(6) can be approximated as

] p

] x
= SK +

4

3
GD ]2ux

] x2 + GS ]2ux

] y2 +
]2ux

] z2 D
+ SK +

G

3
DS ]2uy

] x ] y
+

]2uz

] x ] z
D>G

]2ux

] z2 , s13d

] p

] y
= SK +

4

3
GD ]2uy

] y2 + GS ]2uy

] x2 +
]2uy

] z2 D
+ SK +

G

3
DS ]2ux

] x ] y
+

]2uz

] z] y
D>G

]2uy

] z2 , s14d

0 =SK +
4

3
GD ]2uz

] z2 + GS ]2uz

] x2 +
]2uz

] y2D
+ SK +

G

3
DS ]2ux

] x ] z
+

]2uy

] y ] z
D>SK +

4

3
GD ]2uz

] z2 .

s15d

Here, we have assumed that the pressurepsx,y,z,td is inde-
pendent ofz, since the equilibration time of the pressure inz
direction is of the order ofc0

2/D and is negligibly small com-
pared with the characteristic time of the swellingswhich is
a0

2/Dd.
By eliminating the velocity of solvent from Eqs.(7) and

(8), we have

] u̇x

] x
+

] u̇y

] y
+

] u̇z

] z
=

s1 − fd2

z
S ]2p

] x2 +
]2p

] y2 +
]2p

] z2D . s16d

Since u]u̇x/]xu and u]u̇y/]yu are much smaller thanu]u̇z/]zu,
andp is independent ofz, Eq. s16d can be approximated by

] u̇z

] z
=

s1 − fd2

z
S ]2p

] x2 +
]2p

] y2D . s17d

The boundary conditions are described as
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Hpsx = ± a0/2,y,td = p0

psx,y = ± b0/2,td = p0
for the boundary at the side,

s18d

Huxsx,y,z= ± c,td = 0

uysx,y,z= ± c,td = 0
for the top and bottom boundary.

s19d

Furthermore, since there is no external force acting on the
glass plate, the total force acting on the glass plate must be
zero. This condition is written as

E
−a0/2

a0/2

dxE
−b0/2

b0/2

dysszz− pdz=±c = 0. s20d

From Eq.(15), we have

uz = Astdz, s21d

whereAstd is independent ofx and y since the thickness of
the gel is uniform. Sinceu]ux/]xu and u]uy/]yu are much
smaller thanu]uz/]zu, szz is given by

szz= SK +
4

3
GDAstd, s22d

and Eq.s20d is written as

SK +
4

3
GDAstd =

1

a0b0
E

−a0/2

a0/2

dxE
−b0/2

b0/2

dy psx,y,td. s23d

Equationss17d ands21d lead the following Poisson equation
for the pressurepsx,y,td:

]2p

] x2 +
]2p

] y2 = astd, s24d

where

astd ;
z

s1 − fd2Ȧstd. s25d

This Poisson equation can be solved by the Fourier transfor-
mation under the boundary condition of Eq.s18d:

psx,y,td = p0 − o
m=1

`

o
n=1

`

Cm,ncosS s2m− 1dp
a0

xD
3cosS s2n − 1dp

b0
yDastd, s26d

where

Cm,n= s− 1dm+n 16

s2m− 1ds2n − 1dp2HS s2m− 1dp
a0

D2

+ S s2n − 1dp
b0

D2J−1

. s27d

Equations23d gives

SK +
4

3
GDAstd = p0− astdo

m=1

`

o
n=1

`
64

hs2m− 1ds2n − 1dp2j2

3HS s2m− 1dp
a0

D2

+ S s2n − 1dp
b0

D2J−1

.

s28d

Equationss25d and s28d give the following relation:

tȦstd = p0SK +
4

3
GD−1

− Astd, s29d

wheret is the relaxation time defined by

t ; D−1o
m=1

`

o
n=1

`
64

hs2m− 1ds2n − 1dp2j2HS s2m− 1dp
a0

D2

+ S s2n − 1dp
b0

D2J−1

. s30d

Here,D is the collective diffusion constant of gels defined by
D;s1−fd2sK+4G/3d /z. From Eq.s29d, we can solveAstd
as follows:

Astd = p0SK +
4

3
GD−1H1 − expS−

t

t
DJ . s31d

Here, we used the initial conditionAs0d=0. Therefore, Eq.
s21d leads

uzsz,td = p0SK +
4

3
GD−1H1 − expS−

t

t
DJz. s32d

The time evolution of the thickness of gelscstd is obtained as
follows:

cstd
c0

= 1 + p0SK +
4

3
GD−1H1 − expS−

t

t
DJ . s33d

These results show that the time evolution of the thick-
ness of gels is described by a single exponential and the
characteristic relaxation time depends on the lengths of the
rectangular surfaces and not on the thickness of gels.

From Eqs.(26), (27), and(31), the time evolution of pres-
sure in gels are solved as follows:

psx,y,td = p0F1 −
1

Dt
Ho

m=1

`

o
n=1

`

Cm,ncosS s2m− 1dp
a0

xD
3cosS s2n − 1dp

b0
yDJexpS−

t

t
DG . s34d

From Eqs.s13d and s14d, the displacementsux and uy are
described as follows:

uxsx,y,z,td =
1

2G

] p

] x
sx,y,tdsc0

2 − z2d, s35d

THEORY OF ONE-DIMENSIONAL SWELLING DYNAMICS… PHYSICAL REVIEW E 69, 041402(2004)

041402-3



uysx,y,z,td =
1

2G

] p

] y
sx,y,tdsc0

2 − z2d. s36d

Here, we use the boundary conditions described by Eq.s19d.

IV. COMPARISON WITH EXPERIMENTS

We now compare the result of the present analysis with
the experiment of Suzuki and Hara.

Equation(33) shows that the time evolution of the thick-
ness of gels is described by a single exponential. This agrees
well with the experimental results[Fig. 2(a) of Suzuki and
Hara [1]]. By comparing the theoretical results with the ex-
perimental results, we can see that the swelling ratio in the
equilibrium state is related to the ratio of the elasticity and
the change of osmotic pressure of gels,p0sK+ 4

3Gd−1. From
the experimental results of the swelling process,p0sK
+ 4

3Gd−1 can be calculated to be about 1.5.
Figure 2 shows the size dependence of the relaxation

time. We plottedtD againstsa0
−2+b0

−2d−1, as it was done by
Suzuki and Hara. The relaxation timet is nicely in propor-
tion to the values ofsa0

−2+b0
−2d−1 in agreement with the ex-

perimental results[Fig. 3(b) of Suzuki and Hara[1]]. By
comparing the theoretical results with the experimental ones,
we can see that the collective diffusion constantD in the

experiment is calculated to be about 0.026 mm2/min.
The time evolution of pressure of gels are calculated by

Eq. (34) and shown in Fig. 3.
The profiles of the time evolution of the pressure are in-

variant during the swelling process, and this is one of the
special properties of the diffusion in a single exponential
swelling process.

V. DISCUSSION

In this paper, we have ignored the fast process whose time
scale is shorter thantf .c0

2/D. The swelling process involv-
ing this fast process is schematically shown in Fig. 4. In the
short time scale oftf ,c0

2/D, the gel swells at the side bound-
ary. The volume changeDV is about DV.ÎDtfc02pa0
.c0

2a0. Hence, the change of the thickness isDV/a0
2

.c0
2/a0, which can be neglected for a thin gel. In the time

scale of t,a0
2/D, the solvent can diffuse from the side

boundary into the center of the gel, and the change of the
thickness of the gel is observed in this time scale.

We have shown that the change of the gel thickness is
described by a single exponential function. This comes from
the fact that the gel is constrained by rigid glass plates. If the
gel is constrained by flexible impermeable membranes

FIG. 3. The time evolution of the pressurep in gels sp
=0:white→p0:grayd for various widths of the glass plates with
a0=4.2,9.3,19.3,35.8 mm(from upper figures to lower ones) and
fixed b0=26.0 mm, at times t=0,3200,6400,9600,128000,
16000 min(from left figures to right ones).

FIG. 2. The relaxation timet is plotted
againstsa0

−2+b0
−2d−1 by varying a0 for fixed b0

=26.0 mm.

FIG. 4. The schematics of the swelling process of the gel con-
strained by rigid glass plates related to the time scale.
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shown in Fig. 5, the swelling behavior will be quite different.
For this case, thez component of displacement vectoruz
depends onx and y coordinate, and we should solve the
pressure p=psx,y,td and the displacement vectoru
=fuxsx,y,z,td ,uysx,y,z,td ,uzsx,y,z,tdg.

From Eq.(15), we have

uz = Asx,y,tdz. s37d

Thusszz is given by

szz= SK +
4

3
GDAsx,y,td. s38d

Since there is no external force acting on the flexible mem-
brane,szz−p must be zero:

szz− psx,y,td = 0. s39d

From Eqs.s37d–s39d, we have the relation

uz = SK +
4

3
GD−1

psx,y,tdz. s40d

From Eqs.s17d and s40d, we can show that the pressure
psx,y,td satisfies the following diffusion equation:

] p

] t
= DS ]2p

] x2 +
]2p

] y2D . s41d

This diffusion equation can be solved under the condition of
Eq. s18d with the initial conditionpsx,y,t=0d=0:

psx,y,td = p0F1 − o
m=1

`

o
n=1

`

s− 1dm+n 16

s2m− 1ds2n − 1dp2

3 cosS s2m− 1dp
a0

xDcosS s2n − 1dp
b0

yD
3expS−

t

tm,n
DG , s42d

wheretm,n is the multimode relaxation time:

tm,n ; D−1HS s2m− 1dp
a0

D2

+ S s2n − 1dp
b0

D2J−1

. s43d

From Eq.s40d, the thickness of the gel is given by

csx,y,td
c0

= 1 +SK +
4

3
GD−1

psx,y,td. s44d

Therefore, when the gel is constrained by flexible imperme-
able membranes, the thickness of the gel is not uniform and
the process involves many relaxation times. This is in sharp
contrast to the gel constrained by rigid impermeable plates.

VI. SUMMARY

In this paper, we have calculated the swelling process of
thin-plate gels with rectangular surfaces under mechanical
constraint using the linearized stress-diffusion coupling
model of gels based on the two-fluid model. We have shown
that the theory reproduces several characteristic features of
experimental results, such that the time evolution of the
thickness is described by a single exponential and that the
characteristic relaxation time depends on the lengths of the
rectangular surfaces and not on the thickness of gels.

These results show that the stress-diffusion coupling
model of gels, which considers the relative motion between
the solvent and the polymer of gels together with the me-
chanical coupling between the solvent diffusion and the
polymer network stress, correctly describes the dynamics of
the general anisotropic deformation of gels.
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FIG. 5. The schematics of the swelling process of the gel con-
strained by flexible impermeable membranes related to the time
scale.
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